kalman_filter

Kalman filter for tracking bounding boxes in image space.

source

KalmanFilter

 KalmanFilter ()

A Kalman filter class designed for tracking bounding boxes in image space.

Attributes:

  • ndim (int): The dimension of the state space.
  • _motion_mat (ndarray): The motion model matrix.
  • _update_mat (ndarray): The update matrix used for projecting state distribution to measurement space.
  • _std_weight_position (float): Standard deviation weight for the position.
  • _std_weight_velocity (float): Standard deviation weight for the velocity.

source

KalmanFilter.__init__

 KalmanFilter.__init__ ()

Initialize the Kalman filter with default parameters.


source

KalmanFilter._create_std

 KalmanFilter._create_std (mean:numpy.ndarray)

Compute standard deviations based on the mean.

Type Details
mean ndarray The mean values.
Returns ndarray The computed standard deviations.

source

KalmanFilter.initiate

 KalmanFilter.initiate (measurement:numpy.ndarray)

Initialize a new track from an unassociated measurement.

Type Details
measurement ndarray The initial measurement for the track.
Returns tuple The mean and covariance of the initiated track.

source

KalmanFilter.predict

 KalmanFilter.predict (mean:numpy.ndarray, covariance:numpy.ndarray)

Run the Kalman filter prediction step.

Type Details
mean ndarray The current state mean.
covariance ndarray The current state covariance.
Returns tuple The predicted state mean and covariance.

source

KalmanFilter.project

 KalmanFilter.project (mean:numpy.ndarray, covariance:numpy.ndarray)

Project the state distribution to the measurement space.

Type Details
mean ndarray The current state mean.
covariance ndarray The current state covariance.
Returns tuple The mean and covariance in the measurement space.

source

KalmanFilter.multi_predict

 KalmanFilter.multi_predict (mean:numpy.ndarray, covariance:numpy.ndarray)

Run the Kalman filter prediction step for multiple measurements (Vectorized version).

Type Details
mean ndarray The current state mean.
covariance ndarray The current state covariance.
Returns tuple The predicted state mean and covariance for multiple measurements.

source

KalmanFilter.update

 KalmanFilter.update (mean:numpy.ndarray, covariance:numpy.ndarray,
                      measurement:numpy.ndarray)

Run the Kalman filter correction step.

Type Details
mean ndarray The predicted state mean.
covariance ndarray The predicted state covariance.
measurement ndarray The new measurement.
Returns tuple The updated state mean and covariance after correction.

source

KalmanFilter.gating_distance

 KalmanFilter.gating_distance (mean:numpy.ndarray,
                               covariance:numpy.ndarray,
                               measurements:numpy.ndarray,
                               only_position:bool=False,
                               metric:str='maha')

Compute the gating distance between the state distribution and given measurements.

Raises: ValueError: If an invalid distance metric is provided.

Type Default Details
mean ndarray The state mean.
covariance ndarray The state covariance.
measurements ndarray The given measurements.
only_position bool False If True, consider only position in the gating distance. Defaults to False.
metric str maha The metric to use for distance calculation (‘gaussian’ or ‘maha’). Defaults to ‘maha’.
Returns ndarray The gating distances.