core

Some utility functions for working with the Kaggle API.

source

save_kaggle_creds

 save_kaggle_creds (username:str, key:str, overwrite=False)

Save the Kaggle API credentials.

Type Default Details
username str The Kaggle API username.
key str The Kaggle API key.
overwrite bool False Overwrite existing credentials.
username = "name"
key = "12345"
save_kaggle_creds(username, key, overwrite=False)
Credentials already present. Set `overwrite=True` to replace them.

source

dl_kaggle

 dl_kaggle (kaggle_dataset, archive_path, dataset_path,
            delete_archive=True)

Download the Kaggle dataset and extract it to the specified directory.

Type Default Details
kaggle_dataset The Kaggle dataset id in the format '<username>/<dataset_name>'.
archive_path The path to save the archive file.
dataset_path The path to save the extracted dataset.
delete_archive bool True Delete the archive after extraction.
# Get the path to the directory where datasets are stored
dataset_dir = Path("./Datasets/")
dataset_dir.mkdir(parents=True, exist_ok=True)
print(f"Dataset Directory: {dataset_dir}")

# Create the path to the data directory
archive_dir = dataset_dir/'../Archive'
archive_dir.mkdir(parents=True, exist_ok=True)
print(f"Archive Directory: {archive_dir}")
Dataset Directory: Datasets
Archive Directory: Datasets/../Archive
# Set the name of the dataset
dataset_name = 'style-image-samples'

# Construct the Kaggle dataset name by combining the username and dataset name
kaggle_dataset = f'innominate817/{dataset_name}'
# Create the path to the zip file that contains the dataset
archive_path = Path(f'{archive_dir}/{dataset_name}.zip')
print(f"Archive Path: {archive_path}")

# Create the path to the directory where the dataset will be extracted
dataset_path = Path(f'{dataset_dir}/{dataset_name}')
print(f"Dataset Path: {dataset_path}")
Archive Path: Datasets/../Archive/style-image-samples.zip
Dataset Path: Datasets/style-image-samples
dl_kaggle(kaggle_dataset, archive_path, dataset_path)
Downloading style-image-samples.zip to Datasets/../Archive
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 16.2M/16.2M [00:00<00:00, 50.8MB/s]
!ls {dataset_path}
images